0% Complete
صفحه اصلی
/
هشتمین کنفرانس بین المللی فناوری و مدیریت انرژی
Prediction of Electric Vehicle's Annual Accessibility to Chargers for Providing Ancillary Services Using an Efficient Random Forest Method
نویسندگان :
Saeed Naghdizadegan Jahromi
1
1- شرکت توزیع نیروی برق شیراز
کلمات کلیدی :
Electric Vehicle،Supervised Machine Learning،Random Forest،Game Theory،Frequency Containment Reserve
چکیده :
The use of electric vehicles (EVs) in the power system has grown phenomenally, and when combined with smart grids, a wealth of raw data is accessible. It is challenging to plan and schedule for EVs due to the randomness of their driver behavior and their uncertainties. To cope with these uncertainties, a supervised machine-learning framework (Random Forest) is developed using an open-source application (emobpy) that simulates EVs to help EV aggregators and drivers predict annual charger accessibility. Since ML models are complex black boxes to decipher, a game theory method SHAP (SHapley Additive exPlanations), is employed to indicate the impact of each feature on the model outcome. EV aggregators can plan their market participation using this model. A simulation of the proposed framework in the frequency-controlled normal operation reserve market grew EV aggregators' revenue, indicating its effectiveness.
لیست مقالات
لیست مقالات بایگانی شده
تعیین ظرفیت موقعیت و انتخاب نوع توربین نیروگاه برقابی بطاهرکلا در استان مازندران
محسن تقدسی
Application of Optical Wireless Communications in IoT Devices of Smart Grids within Smart Sustainable Cities: With Hybrid Perspectives to Metaverse & Quantum IoT
Ashkan Safari - Hamed Kharrati
Home Energy Management System Based on Multi-Agent Deep Reinforcement Learning Handling the User’s Thermal Preferences
Ahmad Shahabi - Hamed Delkhosh - Mohsen Parsa Moghaddam
Using Long Short-Term Memory Networks as Virtual Wind Direction Sensors for Improved Wind Farm Turbines Orientation
Amirhossein Karamali - Abolghasem Daeichian - Saber Rezaei
Optimal Siting and Sizing of Distributed Generation Under Uncertainties Using Point Estimate Method
Ali Ashoornezhad - Qasem Asadi - Reza Saberi - Hamid Falaghi
Useful Application of Machine learning Methods in Smart Grids: A Mini Review
Pooya Parvizi - Alireza Mohamadi amidi - Milad Jalilian - Hana Parvizi
Presenting cascade pressure swing distillation for separation of minimum boiling azeotropic mixtures to reduce energy consumption
Aida Azemati - Negar Safaran - Mohammd mahdi Amiri
امکان سنجی ساخت نیروگاه MWatt3 خورشیدی برای تامین برق پایدار شهرک صنعتی بندرعباس
مجید زارع زاده
A High-Gain Common-Ground Single-Switch DC-DC Converter with Low Voltage Stress on the Power Switch and Diodes
Ali Nadermohammadi - َAli Seifi - Hadi Aghaei - Seyed Majid Hashemzadeh - Pouya Abolhassani - Ebrahim Babaei
Advanced Predictive Modeling of Pollutant Gas Emissions in the Automotive Industry based on Machine Learning
Ashkan Safari - Hamed Kheirandish Gharehbagh - Morteza Nazari-Heris - Omid Halimi Milani - Hamed Kharrati - Afshin Rahimi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.1.2