0% Complete
صفحه اصلی
/
هشتمین کنفرانس بین المللی فناوری و مدیریت انرژی
Photovoltaic Power Forecasting With an Ensemble Multi-Input Deep Learning Approach
نویسندگان :
Fariba Dehghan
1
Mohsen Parsa Moghaddam
2
Maryam Imani
3
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
3- دانشگاه تربیت مدرس
کلمات کلیدی :
Bidirectional long short-term memory networks،Convolution neural networks،Deep learning،PV power forecasting
چکیده :
The inherent intermittency of solar power due to meteorological factors presents a significant challenge in integrating them into grids on large scales. An accurate Photovoltaic (PV) power generation forecasting effectively supports achieving optimal planning and operational stability of power systems. Motivated by satisfactory performance of deep learning methods in the energy sector, an ensemble multi-input deep learning method combining three-dimensional convolution (Conv3D) networks and bidirectional long short-term memory (BiLSTM) networks is proposed in this study. First, one-dimensional (vector) PV power production and atmosphere parameters series are rearranged into a bi-dimensional matrix (2D image) and stacked in the third dimension (3D image) to preserve dependency between the input data. Then, the Conv3D network is utilized to extract non-linear spatial features of the 3D image. Finally, the BiLSTM network is implemented to learn the long-term dependencies of the extracted spatial features. The proposed method is utilized for one-day, three-day, five-day, and seven-day ahead PV power forecasting with one-hour intervals for Tennent operators, Germany dataset. Experimental results show reduced prediction error compared to two-dimensional Convolution (Conv2D), Conv3D, long short-term memory (LSTM), BiLSTM, Conv-LSTM, and ConvLSTM networks.
لیست مقالات
لیست مقالات بایگانی شده
پژوهش و تدوین نقشه راه چگونگی بهرهگیری از نیروگاههای تجدیدپذیر در بهرهبرداری و برنامهریزی عملیات بازیابی شبکه سراسری
سجاد نجفی روادانق - پویا سلیانی - نیما نصیری - حمیدرضا فیروزی - بهنام محمدی ایواتلو
Comprehensive Review of Energy Storage Systems for Smart Grids: Technologies and Applications
Ahmad Hafezimagham - Amirreza Baghernezhad - Nabiollah Tayebi - Peyman Ghanbari-Mobarakeh - Gevork B. Gharehpetian - Mehrdad Abedi
A 37-Level Switched-Capacitor Boost Inverter With Reduced Blocking Voltage on Semiconductors
Armin Ghelichi - Kazem Varesi - Vahid Dargahi
بررسی مؤلفه های پایداری در معماری سیستان با هدف مدیریت انرژی در ساختمان (مطالعه موردی: آثار پیش از اسلام در محوطه کوهخواجه)
جمشید داوطلب - ابوالفضل حیدری - فرهاد وحیدی نیا
Enhancing Efficiency in Bidirectional DC-DC Converters through PSO-Based Optimization
Saeed Izadi - Mahnaz Izadi - Khatereh Jabari - Behnam Zaker
Single-Switch Ultra-High Step-Up Quadratic DC-DC Converter with High Power Density and Low Cost for DC Microgrid Applications
Ali Nadermohammadi - Hamed Heydari-Doostabad - Seyed Hossein Hosseini
Novel Hybrid Fuzzy/Rule-based Energy Management for Grid connected Hybrid Energy Storage System
Saeed Hosseinnataj - Ehsan Farrokhi - Jafar Adabi
بررسی راهکارهای کاهش مصرف انرژی در ساختمان مسکونی به وسیله نرم افزار دیزاین بیلدر
فاطمه آخوندی - مجید نیکفر
Optimization of Residential PV and Battery Storage Systems in Iran Using Grey Wolf Optimizer Under the Latest Tariff Structure
Mohammad Hosein Mahmoodian - Hossein Gharibvand - Serge Yeghyazarian Tabrizi - Gevork.B Gharehpetian - Hasan Rastegar
Performance optimization of hybrid energy system considering hydrogen storage system and fuel cell under real-time load response program
Sayyad Nojavan - Hassan Khoudeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.2.0