0% Complete
صفحه اصلی
/
نهمین کنفرانس بین المللی فناوری و مدیریت انرژی
StateEVMan: Advanced Predictive Ensemble Optimization of Electric Vehicle Charging Stations
نویسندگان :
Ashkan Safari
1
Hamed Kheirandish Gharehbagh
2
Morteza Nazari-Heris
3
Hamed Kharrati
4
Afshin Rahimi
5
1- University of Tabriz
2- University of Tabriz
3- Lawrence Technological University
4- University of Windsor
5- University of Windsor
کلمات کلیدی :
Electric Vehicle Charging Stations،Forecasting،Optimization،Doubly-Fed LSTM،Precision Forecasting
چکیده :
Optimizing electric vehicle charging stations through advanced predictive ensemble techniques is essential for enhancing efficien-cy, reducing operational costs, and promoting the widespread adoption of electric vehicles. This approach plays a pivotal role in ensuring seamless charging experiences, thereby advancing the transition to a sustainable and eco-friendly transportation sys-tem. By this regard, the proposed paper presents StateEVMan, a novel approach employing doubly-fed Long Short-Term Memory (LSTM) techniques in conjunction with a comprehensive Electric Vehicle (EV) station dataset. Utilizing stacked ensemble learning, the model predicts three key performance indicators (KPIs): Charging Time [Hour], Total Power Output [kWh], and Total Cost [$]. The study assesses the model's performance using Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²) metrics across a dataset comprising 10,185 data points. Notably, the model achieves accurate predictions for these KPIs, demonstrating its robust forecasting capabilities. StateEVMan emerges as a consid-erable tool for optimizing EV charging station operations and enhancing efficiency.
لیست مقالات
لیست مقالات بایگانی شده
Energy District Simulations: A Test System for Flexibility Studies
Hossein Gharibvand - Gevork B. Gharehpetian - Amjad Anvari-Moghaddam
A New Multilevel Inverter with Limited Switching Devices and DC Sources
Ali Seifi - Seyed-Hossein Hosseini - Mehrdad Tarafdar Hagh - Majid Hosseinpour
Simultaneous investigation of the increase in organic load of sediment using spirulina algae powder and increase in catholyte conductivity on sediment microbial fuel cell performance
Hanie Soleimani - Mostafa Rahimnejad - Mehrdad Mashkour
A hybrid CPV/T system equipped with compound parabolic concentrator and Nano-PCM for optimal electricity generation and hot water
Mostafa Gharzi - Akbar Arabhosseini - Zakieh Gholami - Mahdi Pakchi
Assessing the GHG mitigation pathways in the Iran energy supply system
Mohammad Sharifian - Hossein Khajehpour - Amir Hossein Fakehi Khorasani
Hydrogen Pinch Analysis with Recycled Hydrogen Approach by Energy Management of Refinery Processes in Optimal State
Daryoush Tavangar Rizi - Mohammad Hassan Nazari - Seyed Hossein Hosseinian - Gevork B. Gharehpetian - Maryam Fani - Amir Khorsandi
طراحی کنترلکننده PD-PI برای کنترل مبدل بوست بهبودیافته با استفاده از الگوریتم SMA
سمانه سلملیان - حسین شایقی - فرزاد صداقتی - رضا مهاجری
Employing Machine Learning Algorithms to Identify False Data Injection in Smart Grid
Mohsen Tajdinian - Mostafa Mohammadpourfard - Ali Goodarzi
Improving Transient Stability in Power Systems Through Integration of Large-Scale Photovoltaic Power Plants
Hadi Abbaspour - Siavash Yari - Hamid Khoshkhoo - Innocent Kamwa
Advanced Predictive Modeling of Pollutant Gas Emissions in the Automotive Industry based on Machine Learning
Ashkan Safari - Hamed Kheirandish Gharehbagh - Morteza Nazari-Heris - Omid Halimi Milani - Hamed Kharrati - Afshin Rahimi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.2.0